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Abstract—The rapid growth of space-based services has estab-
lished Low Earth Orbit (LEO) satellite networks as a promising
option for global broadband connectivity. Next-generation LEO
networks leverage inter-satellite links (ISLs) to provide faster and
more reliable communications compared to traditional bent-pipe
architectures, even in remote regions. However, the high mobility
of satellites, dynamic traffic patterns, and potential link failures
pose significant challenges for efficient and resilient routing. To
address these challenges, we model the LEO satellite network as
a time-varying graph comprising a constellation of satellites and
ground stations. Our objective is to minimize a weighted sum of
average delay and packet drop rate. Each satellite independently
decides how to distribute its incoming traffic to neighboring nodes
in real time. Given the infeasibility of finding optimal solutions
at scale, due to the exponential growth of routing options
and uncertainties in link capacities, we propose SKYLINK, a
novel fully distributed learning strategy for link management
in LEO satellite networks. SKYLINK enables each satellite to
adapt to the time-varying network conditions, ensuring real-time
responsiveness, scalability to millions of users, and resilience to
network failures, while maintaining low communication overhead
and computational complexity. To support the evaluation of
SKYLINK at global scale, we develop a new simulator for large-
scale LEO satellite networks. For 25.4 million users, SKYLINK
reduces the weighted sum of average delay and drop rate by
29% compared to the bent-pipe approach, and by 92% compared
to Dijkstra. It lowers drop rates by 95% relative to k-shortest
paths, 99% relative to Dijkstra, and 74% compared to the bent-
pipe baseline, while achieving up to 46% higher throughput.
At the same time, SKYLINK maintains constant computational
complexity with respect to constellation size.

I. INTRODUCTION

DRIVEN by lower satellite development and deployment
costs, this century has seen the rapid growth of space-

based services. As a result, space broadband services have
become widely accessible [1]–[5]. In fact, multiple reports
highlight this sector as a key growth area with a strong cumu-
lative growth rate [6]–[9]. Early satellite broadband services
used bent-pipe connectivity, i.e., data traveled from a user
terminal to a satellite and directly back to a ground station
[10]. However, this method becomes impractical in remote
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areas without nearby ground stations. Consequently, providers
have started to shift towards Inter-Satellite Links (ISLs), where
data is relayed between satellites at the speed of light before
reaching the ground [11], [12]. Advantages of using ISLs
include reduced delay and higher bandwidth, which is essential
for broadband networks [13].

Efficient use of ISLs demands dynamic link management
which is challenging due to continuously evolving topologies.
Satellites therefore employ regenerative payloads1, which al-
low them to manage data flows and perform real-time routing
(cf. 3GPP TR 38.811 [31]). Yet, identifying globally optimal
link configurations remains difficult due to the exponential
growth in routing options as the constellation scales to hun-
dreds of satellites. This complexity is further increased by
terabit-scale traffic demands and the need to continuously react
to topology changes and failures, whether due to system faults
or external events such as solar storms [29], [32].

Link management in LEO satellite networks can be ap-
proached using classical shortest-path algorithms [28] or more
recent machine-learning-based solutions [14], [15]. While
shortest-path algorithms, such as Dijkstra’s or k-shortest path,
are widely used in terrestrial networks, they fall short in LEO
scenarios [28]. These algorithms often result in paths that
overlap on the same Ground-Station-Satellite Links (GSLs),
creating bottlenecks in areas where large volumes of data need
to be transmitted simultaneously or where the GSLs have lim-
ited capacities. To avoid such bottlenecks, recent research has
explored the use of Deep Q-Networks (DQNs) to redistribute
traffic and ensure efficient network performance [14], [15].
However, both, shortest-path algorithms and learning solutions
often rely on central controllers to monitor network failures
and propagate updated routes to all nodes. The controllers
are usually located on earth due to the limited computational
capabilities of LEO satellites. As a result, continuous collec-
tion of global network state information is required causing
slow response time to rapid topology changes, and introducing
communication overhead. In highly dynamic networks, any
delay in distributing updated control commands can result
in inefficient link management, increased packet drop rate,
and higher delays. Additionally, the dependency on a central
controller reduces the resilience of the system, as failures need

1Enabling onboard signal processing and routing.
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[14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] Ours

Joint Minimization of
Delay & Drop Rate ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Dynamic Network ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

ISLs and GSLs ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Multi-Path Routing ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Distributed Approach ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Large Constellation ✓ ✓ ✓ ✓ ✓ ✓ ✓

Global Broadband Communication ✓ ✓ ✓

Resilience to Network Failures ✓ ✓ ✓ ✓

TABLE I: Summary of the related work on routing in LEO constellations.

to be centrally detected and accounted for.
A partial solution to the necessity for a central controller

is to offload link management decisions to ground stations or
higher-altitude Medium Earth Orbit (MEO) satellites, where
computational resources are less constrained than on LEO
satellites [33]–[36]. However, communication to ground sta-
tions or MEO satellites introduces additional delay [37] and
still requires real-time network state information, which is
difficult to maintain given the high mobility and frequent han-
dovers. Additionally, failures in connections to MEO satellites
can lead to substantial network disruptions, as link manage-
ment decisions for entire regions might become inaccessible.
Instead of relying on a central controller, pre-trained models
can be periodically distributed across the network. However,
this comes at the cost of slower response times to disturbances.

The development of a fully distributed, failure-resilient,
and scalable link management strategy is as a key research
challenge for advancing LEO satellite networks. Therefore,
in this paper, we introduce SKYLINK, a distributed learning
approach that directly tackles the scalability, resilience, and
computational complexity of link management in LEO satel-
lite networks. SKYLINK combines the Multi-Armed Bandit
(MAB) framework [38] with tile coding to enable each satellite
to autonomously and efficiently prioritize its communication
links using only local information. By making real-time,
decentralized decisions, SKYLINK minimizes the delay and
drop rate even under heavy traffic conditions and satellite
failures, and without relying on global coordination.

The evaluation of link management solutions for LEO satel-
lite networks demands global scale analysis. However, existing
simulations tools are often limited to network segments (see
e.g. [14], [22]). Thus, to realistically benchmark SKYLINK, we
introduce a novel simulator capable of modeling entire LEO
satellite networks. Our simulator models global-scale traffic
and allows us to validate SKYLINK’s performance across
various scenarios including millions of users, high traffic
volumes, and network failures.

In summary, the primary contributions of this work are:

• We introduce SKYLINK, a fully distributed link manage-
ment approach to jointly minimize the delay and drop

rate in LEO satellite networks. Specifically, we break the
complexity of the problem by using MAB-based learning
including tile coding mechanisms. Due to its distributed
nature, SKYLINK is scalable in network size and data
volume and resilient to network failures.

• For a realistic evaluation, we present a new, extensive
and fast simulator capable of modeling LEO satellite
networks globally. Our simulator includes advanced tools
for space broadband simulations, detailed channel models
for ISLs and GSLs, a global data generation framework,
a representation of network data streams, and diverse
visualization options2.

• We show via extensive evaluation that SKYLINK signif-
icantly reduces delay and drop rate in the LEO satellite
network and increases the network’s throughput com-
pared to various reference schemes, even under scenarios
of increased traffic load and satellite failures.

The rest of the paper is organized as follows. We discuss
related work in Sec. II. In Sec. III we introduce the system
model and formulate the optimization problem in Sec. IV.
SKYLINK is presented in Sec. V and we describe the details of
our simulator in Sec. VI. The numerical evaluation is presented
in Sec. VII and Sec. VIII concludes the paper.

II. RELATED WORK

In this section, we review the related work on link manage-
ment for LEO satellite networks. Table I summarizes recent
advancements in the field. The pioneering work of Gounder et
al. introduced a k-shortest path algorithm for satellite networks
[19]. Over the past five years, the increasing availability and
deployment of large LEO satellite networks have sparked
considerable interest within the research community.

Contemporary studies already consider dynamic satellite
networks using both ISLs and GSLs, and allowing multi-path
routing to distribute traffic [20]–[30]. In these works, link
management solutions considering different optimization goals
have been investigated. Specifically, the joint optimization of

2The code is available under https://github.com/wanjads/SkyLinkSimulator.
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delay and packet drop rate is studied in [22]–[25], [28]–
[30], delay minimization is considered [26], [27], forwarding
overhead reduction is investigated in [18], and [21] maximizes
the network efficiency.

Although some of these works consider only relatively
small LEO constellations, such as Iridium [21]–[23] or Kepler
[24], works like [20], [25] address networks with a couple
of hundreds of satellites while [26]–[30] investigate mega
LEO constellations. Mega constellations, such as Starlink or
Kuiper, consist of thousands of satellites and are designed
to deliver global broadband communication to millions of
users. However, despite their focus on mega constellations,
many studies consider only on a subset of communication
paths, typically optimizing pre-defined source-destination pairs
rather than network-wide traffic patterns [26]–[29]. Only the
authors of [30] consider global broadband traffic. In particular,
they investigate the satellite network’s resilience through a
hierarchical model relying on nearest-neighbor searches for
route selection. However, the proposed model relies on a
centralized architecture which can lead to congestion under
high traffic. In fact, a critical gap in the literature is the lack of
approaches that simultaneously adopt a distributed framework
and focus on resilience against network failures.

In summary, while impressive progress has been made
in routing for LEO satellite networks, challenges remain in
achieving scalable and resilient solutions for large constella-
tions.

III. SYSTEM MODEL

A. LEO Satellite Networks

We focus on a communication scenario in which the satel-
lites receive data from the users within their coverage area and
route it to the internet. As illustrated in Fig. 1, we consider
a LEO satellite network consisting of a set N of N LEO
satellites N = {n1, . . . , nN} and a set M of M ground
stations M = {m1, . . . ,mM}. The system operates in time
slots, starting at t = 0 and continuing until a finite time horizon
T , with each slot lasting a fixed and constant duration τ .

Satellites establish both, full-duplex optical ISLs [39] and
half-duplex radio GSLs and decide, in every time slot, which
established ISLs and GSLs to use to relay their incoming data.
Considering current technology, we assume that each satellite
establishes at most four ISLs to neighboring satellites [40]–
[42], two of which are in the same orbit, while the remaining
are neighboring satellites in adjacent orbits. Consequently, the
ISLs form a +grid as indicated in Fig. 1. Due to irregularities
in this grid, pending deployment or failures, the next neigh-
boring satellite in a given direction might not be available
for an ISL. In such cases, the satellite does not establish an
ISL in that direction. In every time slot, each ground station
mi establishes GSLs to the µi closest satellites, where µi is
the number of antennas at ground station mi. Satellites use
these GSLs to send data to the ground. The ground stations
establish connections to the internet via fiber optic links. Both,
satellites and ground stations can simultaneously transmit data
over their outgoing links and receive data from satellites.
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Fig. 1: Diagram of the considered scenario

B. Grid Model

All the links among satellites and ground stations form a
directed graph Gt = (V, Et) at each time slot t. Here, the
vertex set V = N ∪ M ∪ {z} contains all satellites, ground
stations, and the internet node z. The edge set Et includes
all links (v, w) between any two nodes v, w ∈ V at time
slot t. This includes ISLs, GSLs, and the ground stations’
links to the internet. For any satellite or ground station v, the
set Xv,t contains the paths to the internet. Each path X is a
sequence of links ((w0, w1), (w1, w2), . . . , (wn−1, wn)). We
call the target node of the last link in a path its terminal node.
During time slot t, the data transmitted over each path X is
modeled as a continuous stream with a fixed rate RX . The
variable x(w,w′),t represents the amount of data that satellite
w decides to transmit over the link (w,w′) in time slot t. The
vector xt aggregates the decisions of all the satellites in time
slot t and is given by xt = (x(v,w),t)(v,w)∈Et

. In time slot
t, the set of outgoing links at node v is denoted as Ov,t =
({v} × V) ∩ Et.

C. Data Generation Model

We consider a stream-based model for data transmission,
where each satellite receives individual data streams and relays
them to the internet. The user data rates Rg

n,t received at
satellite n during time slot t depend on the satellite’s location
and local time, and are measured in bit/s. Higher rates occur
over densely populated regions and peak hours, while lower
rates are over remote areas and at night. We divide the day
into hourly intervals and the Earth’s surface into a one-degree
grid. Rg

n,t is the sum of data streams of all the cells associated
with satellite n as

Rg
n,t = Popn,t · d · ν · tn,t, (1)

where in time slot t, Popn,t is the population count associated
to satellite n, d is the average number of devices per person
using the LEO network, ν is the average traffic per device and
second and tn,t is a factor scaling the traffic according to the
local time of the day.
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Satellites and ground stations have limited data buffers for
storing data awaiting transmission, with each node v having
a capacity Qmax

v . If the outgoing data rate Rout
v,t of a node

v is less than the incoming data rate Rin
v,t, the buffer at the

receiving node fills up. When the buffer is full, a uniform per-
centage of data from every incoming stream will be dropped to
align the incoming stream size with the outgoing rate (Rout

v,t =
Rin

v,t). Our model focuses on the steady state of buffers, either
filled or empty, disregarding the transitional phases of filling
or emptying. Incoming data at satellites without an outgoing
link is dropped.

D. Capacities and Delays

Each link (v, w) ∈ Et has a capacity C(v,w),t. If a satellite
decides to transmit more data through a link than its capacity
allows, i.e. if x(v,w),t > C(v,w),t, the excess amount of data
is dropped.

The capacity C(v,z),t of the fiber optic link from a ground
station v to the internet z is assumed to be constant. To
model the capacity C(v,w),t of an ISL between satellites
v, w ∈ N , we first calculate the received power Prx,v,w,t as the
transmitted power Ptx of satellite v scaled by the pointing loss
Lpointing and the fraction of the transmitted beam intercepted
by satellite w as

Prx,v,w,t = Ptx · Lpointing ·
π (0.5 ·∅)

2

π(dv,w,t · θ)2
(2)

where Lpointing results from the angular deviation between the
transmitting and receiving antennas, ∅ is the aperture diameter
of the receiver at satellite w, dv,w,t is the distance between the
satellites, and θ is the beam divergence angle. Note that this
model assumes a canonical beam and uniform beam intensity.
The noise power is calculated as

Pσ,v,w = k · Tσ ·BISL (3)

where k is the Boltzmann constant, Tσ is the noise tempera-
ture, and BISL is the bandwidth of the link between v and w.
C(v,w),t is then obtained using the Shannon-Hartley theorem:

C(v,w),t = λ ·BISL · log2
(
1 +

Prx,v,w,t

Pσ,v,w

)
, (4)

where, λ < 1 represents a scaling factor to account for the
fact that only part of the link’s total capacity can be allocated
for data transmission from the user to the internet.

The capacity C(v,w),t for the GSLs between satellite v and
ground station w is also modeled using the Shannon-Hartley
theorem. In this case, the total received power Prx at the ground
station is computed as

Prx = exp

(
log(10) · (EIRP − FSPL +Grx −Aatmos)

10

)
, (5)

where EIRP is the equivalent isotropic radiated power trans-
mitted by the satellite, FSPL denotes the free-space path loss,
Grx is the gain of the ground station’s receiver antenna, and
Aatmos represents the atmospheric attenuation factor. The free-
space path loss is given by

FSPL = 20 log10

(
4πdv,w,t · fc

c

)
, (6)

where fc is the carrier frequency and c is the speed of light.
The atmospheric attenuation Aatmos depends on the elevation
angle between the satellite and the ground station, with lower
elevation angles resulting in greater attenuation due to the
longer path through the atmosphere. The noise power Pσ,v,w
on the GSLs is calculated as

Pσ,v,w = k · Tsky ·BGSL, (7)

where BGSL is the bandwidth of the ground-satellite link, and
Tsky is the sky noise temperature. The sky noise temperature
is influenced by atmospheric attenuation and is computed as

Tsky = Tmr ·
(
1− 10−Aatmos/10

)
+ 2.7 · 10−Aatmos/10, (8)

where Tmr represents the microwave background radiation
temperature.

Here, practical hardware effects can be incorporated by
reducing the effective EIRP and/or Grx and/or as an increase
of the effective noise temperature. Examples for such effects
can be found in the literature (see e.g. [43]). Hence, hardware
non-idealities affect capacity through the resulting Prx

Pσ
and are

implicitly reflected in the GSLs’ qualities.

IV. PROBLEM FORMULATION

Our objective is to find a link management solution that
minimizes the average cost given by a weighted sum of delay
and drop rate. This formulation ensures that the network
operates efficiently by avoiding trade-offs where reducing
delay significantly increases data loss or minimizing drop rate
causes excessive delays. To rigorously define the problem, we
first introduce necessary definitions.

The drop rate ζv,t of a node v in time slot t is defined as

ζv,t = 1− R̃v,t, (9)

where R̃v,t = Rs
v,t/R

g
v,t is the share of traffic that was

successfully routed to the internet. Rs
v,t is the actual amount of

user data traffic successfully routed to the internet and Rg
v,t is

defined in (1). We do not consider single packets. Drop rates
are computed directly at the rate level in our stream-based
model. This modeling choice allows us to scale to hundreds
of satellites and tens of millions of users while preserving the
congestion, buffering, and delay phenomena that drive routing
decisions. Data streams are dropped due to low link capacity,
whenever they are transmitted in a loop, if they reach a node
without outgoing links, or if their delay exceeds the maximum
tolerable delay Tmax.

The propagation delay DTx
(v,w),t ∈ R+ for the link between

v ∈ N and w ∈ N ∪M is approximated as

DTx
(v,w),t :=

dv,w,t

c
. (10)

For simplicity, the propagation delay DTx
v,t of the fiber optic

link between ground station v and the internet is modeled as
a random variable drawn from a uniform distribution, with
fluctuations introduced by Gaussian noise in each time slot.
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While the choice of ground station does influence the actual
delay, this effect is beyond the scope of this work.

The queuing delay Dq
v,t of node v ∈ N ∪M is the average

duration the data remains in the node’s data buffer before being
forwarded. Assuming a First-In-First-Out queue, Dq

v,t is:

Dq
v,t :=

{
0 if ∆C ≤ 0

Qmax
v∑

(v,w)∈Ov,t
min(x(v,w),t,C(v,w),t)

if ∆C > 0,

(11)
where ∆C := Rin

v,t −
∑

(v,w)∈Ov,t
min(x(v,w),t, C(v,w),t).

The delay of a path X with terminal node z is defined as
the sum of the propagation delays DTx

(v,w),t of the links (v, w)

in the path and the queuing delays Dq
v,t of all intermediate

nodes v:

DX := min

(∑
(v,w)∈X

DTx
(v,w),t +Dq

v,t, Tmax

)
. (12)

If the terminal node in path X is not the internet node z or if
the path contains a loop, the traffic is dropped and DX is set
to Tmax. The same applies if the paths’ delay exceeds Tmax.

The cost cv,t at satellite v considers all paths in Xv,t and is
calculated as the weighted sum of the delays of each path:

cv,t =

∑
X∈Xv,t

RXDX∑
X∈Xv,t

RX
, (13)

where RX is the amount of traffic transmitted over path X .
The average cost ct of all satellites at t is given by

ct(xt) =

∑
n∈N Rg

n,tcn,t∑
n∈N Rg

n,t

. (14)

As dropped data contributes the highest possible delay of Tmax

to ct(xt), considering ct(xt) as the optimization target leads
to a joint minimization of average delay and drop rate. From
the network perspective, ct(xt) can be minimized by solving:

x∗
t = argmin

xt∈(R+)|Et|
ct(xt), ∀t = 0, ..., T − 1 (15)

Solving (15) requires that every satellite has perfect knowl-
edge of C(v,w),t and Rg

v,t for all other satellites v ∈ N ∪M,
an assumption that is hard to fulfill in real systems.

V. SKYLINK

In this section, we present SKYLINK, our proposed solution
for link management in satellite networks. Unlike existing
algorithms, SKYLINK is fully distributed, scalable, resilient,
and does not require perfect knowledge of all C(v,w),t and Rg

v,t

at every satellite. We begin with an overview of its concept,
followed by a detailed description and the pseudocode.

A. Concept

Using SKYLINK, each satellite autonomously decides which
of its established links to prioritize for data transmission in
order to minimize the average delay and drop rate in the
network. SKYLINK is based on the MAB framework and uses
the Upper Confidence Bound (UCB) criterion. The satellite
uses the MAB framework to decide which links to use. It

500 km

Distance: 1100 km

500 km 500 km

Partition A
Partition B

500 km

500 kmRelevant Contexts

Fig. 2: Visualization of SKYLINK’s tile-coding mechanism.

evaluates each option using the UCB criterion and selects its
next action based on the updated evaluation.

The decision (x(v,w),t | w ∈ Ov,t) of a satellite v represents
the distribution of traffic across available links w in Ov,t. Un-
like traditional MAB problems with discrete choices, this de-
cision is continuous. SKYLINK addresses this by first creating
a ranked list of preferences for the established links. Incoming
traffic is then directed through the highest-ranked link on this
list. Once its capacity is reached, additional traffic is routed
through the next link in the ranking, and so forth. SKYLINK
additionally adapts its link distribution based on the particular
conditions, i.e., the context, of each satellite. We consider that
each satellite uses the distances to its neighbors as context.
As a result, instead of a single global context, the satellite
observes a separate context (i.e., distance) for each link. Such
model allows the satellite to evaluate each link separately and
based on its specific characteristics. Note however, that the
considered context is continuous. Therefore, to maintain a low
computational complexity and low learning time, we quantize
it into discrete partitions using a tile coding mechanism [38].
Specifically, we divide the continuous contexts into multiple
overlapping partitions. Under the assumption that the cost
distribution is stationary in each context, our link selection
algorithm inherits the convergence properties of the contextual
UCB algorithm.

In Fig. 2, we show an example with two partitions, A and B,
which represent quantized distance ranges to a neighbor. The
satellite discretizes the distances to its neighbors into fixed-
length intervals (e.g., 500 km segments; see Fig. 2), with a
maximum distance defining the size of each partition. For
every neighbor and for each context within these partitions,
the satellite learns independently. When evaluating a link
during decision-making, the satellite calculates the distance
to its neighbors (1100 km in this example), identifies the
corresponding tile (highlighted in a darker shade in the figure)
within the quantized partition, and aggregates the knowledge
associated with these tiles. In the following subsection, we
explain central concepts of SKYLINK in more detail.

B. Ranking Links

Each satellite uses its experience from previous time slots to
rank the established links. For every link (v, w), each satellite
stores and updates the average cost c̄v,w(g, d(v,w)) experienced
when using this connection in each given context and in each
partition. The average cost c̄v,w(g, d(v,w)) is updated using a
running mean. Additionally, each satellite keeps track of the
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number n(v, w, g, d(v,w)) of times the link (v, w) is used in
each context. With this information, the satellites are able to
evaluate the UCB-criterion for every partition g as

UCBg
t (v, w) = c̄v,w(g, d(v,w))−

√
2 log(t)

n(v, w, g, d(v,w))
. (16)

The UCB score is then calculated as the average over all
scores for each partition:

UCBt(v, w) =
1

|G|
∑
g∈G

UCBg
t (v, w), (17)

where G is the set of partitions. Each satellite calculates this
UCB score for all its established links. The links are then
ranked based on these scores, with lower scores indicating
a higher preference. The ranking determines the order in
which the satellite routes and distributes incoming traffic. By
continuously updating the delays and counts for each context,
the satellites dynamically adjust their preferences based on the
observed delays.

C. Distributing Traffic
Given the list of preferences, SKYLINK distributes the

incoming traffic to its outgoing links following a water-filling
pattern. Each satellite first estimates the capacity C(v,w),t of
each ISL and GSL link (v, w), as described in Sec. III. To
account for uncertainties concerning the capacity, for example,
the uncertainty caused by the fact that the atmospheric atten-
uation Aatmos is weather-dependent, we include an uncertainty
factor σ < 1 when determining the link’s capacity. By using
σC(v,w),t, SKYLINK ensures that the capacity of a link is not
overestimated, which would result in higher drop rates.

After estimating the link capacities, the decision of satellite
v is given as follows. For an incoming data rate Rin

v,t at time
slot t, let the list of preferences for its established links be
given by (w1, ..., wk), k = |Ov,t|. Now assume that for some
i < k

i∑
j=1

σC(v,wj),t < Rin
v,t,

and
i+1∑
j=1

σC(v,wj),t ≥ Rin
v,t.

Then the full capacity of the first i links is used, i.e.,

x(v,wj),t = σCj , j = 1, ..., i. (18)

For link i+ 1, SKYLINK sets:

x(v,wi+1),t = Rin
v,t −

i∑
j=1

σCj . (19)

Within any used outgoing link, capacity is divided propor-
tionally among all incoming streams. Through this flow-level
proportional sharing, we approximate the behavior of packet
schedulers. The remaining links j = i + 2, ..., k are not used
and x(v,wj),t = 0. If the incoming traffic exceeds the sum of
the capacity of all established links, each link is used to its
full capacity and the remaining data in the buffer is dropped.

Algorithm 1 SKYLINK at satellite v in time slot t
1: for wi ∈ Ov,t do: ▷ Calculate UCB-value, Eq. (17)

2: for g ∈ G do:

3: UCBg
t (v, wi) = c̄v,wi (g, d(v,wi)

)−
√

2 log(t)
n(v,wi,g,d(v,wi)

)

4: end for

5: UCBt(v, wi) =
1
|G|

∑
g∈G UCBg

t (v, wi)

6: end for

7: Sort neighbors (wi)
k
i=1 in ascending order of UCBt(v, wi)

8: for i = 1 to k do ▷ Allocate flow, Eqs. (18), (19)

9: if
∑i

j=1 Cj < Rin
v,t then

10: x(v,wi),t
← Ci

11: else

12: x(v,wi),t
← Rin

v,t −
∑i−1

j=1 Cj

13: break

14: end if

15: end for

16: Observe cost cv,t

17: for g ∈ G do:

18: n← n(v, w1, g, d(v,w1))

19: c̄v,w1 (g, d(v,w1))←
n·c̄v,w1

(g,d(v,w1))+cv,t

n+1

20: end for

21: n(v, w1, g, d(v,w1))← n(v, w1, g, d(v,w1)) + 1

D. Implementation

We describe how SKYLINK is implemented by explaining
the pseudo-code shown in Alg. 1. Note that the pseudo-code
is provided for a single satellite v at time slot t. Each of the
satellites simultaneously executes this algorithm.

In every time slot t, SKYLINK observes the satellite’s
neighbors (wi)

k
i=1 to which v is connected either by an ISLs or

by a GSLs and calculates the UCB-scores for each link using
tile coding as described in Eq. 17 (lines 1-6). Based on these
scores, SKYLINK creates the list of preferences (line 7). Using
this list, v decides on the amount of traffic it relays through
each of its links according to the water-filling mechanism
described in Eq. 18 and Eq. 19 (lines 8-15).

Finally, SKYLINK observes the delay resulting from its
decision (line 16) and updates the counter and the average
delay of its preferred link (lines 17-21).

We based our implementation of SKYLINK on distances
as contexts, because experiments showed that, among all
tested features, per-link distance has the most direct and
strongest influence on routing performance, outperforming any
single alternative and all feature combinations. Beyond per-
link distance, we evaluated local and UTC time, satellite load,
neighbor distance, total path distance, and their combinations
as contexts.

E. Computational Complexity

We analyze the time complexity of SKYLINK per satellite
and per time slot. Here, k = |Ov,t| denotes the number of
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established outgoing neighbors (ISLs and GSLs), and |G| is
the number of tile-coding grids. For each neighbor and each
grid, SKYLINK performs a constant-time update. Each satellite
establishes at most four ISLs to neighboring satellites. Addi-
tional neighbors are the visible ground stations with which
GSLs are established. Hence k ≤ 4 +

∣∣visible GSLs at t
∣∣ and

is independent of constellation size. Ranking the k neighbors
is in O

(
k log k

)
. The water-filling loop performs at most∑k

i=1 i = O(k2) operations. With prefix sums, this reduces
to O(k). Finally, updating the running means is linear in the
number of grids. Overall, per satellite and time slot, the time
complexity of SKYLINK is in O

(
k |G|+ k log k

)
. This makes

the complexity independent of the number of satellites and
users because k is bounded by visibility of ground stations
rather than constellation size or demand.

VI. LEO NETWORK SIMULATOR

Existing simulation tools for the evaluation of link man-
agement in LEO satellite networks are usually limited to
network segments (see e.g. [14], [22]). Therefore, to validate
our proposed approach at a global scale and support the
advancement of LEO satellite networks, we present a novel
simulation framework. Within our simulator, we make use of
CosmicBeats [44] to pre-calculate the exact position of each
ground stations and each satellite in every time slot over the
time horizon. To perform these calculations, CosmicBeats uses
a list of coordinates for each ground station, Two-Line Element
(TLE)-data for each satellite in the considered constellation, a
time slot duration τ and a time frame including a starting
time and a number of time slots T . We use a flow-level
(stream-based) simulator. As described in Sec. III, user data
are represented as continuous rates per time slot. Individual
packets are not instantiated. Based on this information, our
simulator enables global-scale evaluation of link management
approaches by combining the following components, which
we describe in detail in the following.

Grid Construction For each satellite, we pre-calculate its
direct neighboring satellites in the constellation grid and the
visible ground stations it can connect to. Using the satellite’s
location information from CosmicBeats, the simulator builds
a grid containing at most four close, visible neighbor satellites
(one in each cardinal direction), as well as the visible ground
stations in each time slot. The grid is limited to four neighbors
to account for the number of available ISL links.

Channel Models Using the satellites’ positions and ground
stations’ locations, the simulator determines, in each time
slot, the channel conditions based on the models described
in Sec. III. With this information, the capacities C(v,w),t of
the ISLs and GSLs are calculated. Note that we pre-calculate
the atmospheric attenuation Aatmos for different angles between
satellites and ground stations.

Data Generator The simulator uses a global population
dataset [45] to assign each satellite an amount of traffic
proportional to the population living close to its position. The
amount of traffic is then calculated as detailed in Eq. (1).

Data Stream Transmission Using the generated network
grid, its channel properties, and the incoming rates, we sim-
ulate the transmission of data streams in the network. As

Inter Satellite Link

Ground Station Satellite Link

Satellite

Ground Station

Fig. 3: The simulated network including OneWeb satellites
and ground stations. The section at the bottom is highlighted
in the top map and includes GSLs and ISLs carrying traffic.

a result, we obtain the experienced delay, drop rate, and
throughput per satellite, as well as network metrics like total
network throughput and average number of hops per path.

Visualization Our simulator offers multiple options for
visualizing both the network structure and the performance of
various routing strategies. An example of a simulated network
visualization is shown in Fig. 3. The upper portion depicts
the entire OneWeb LEO network as of September 26, 2023,
at 08:51:00 UTC. In the lower portion, a zoomed-in section
of the network is presented, additionally including ISLs and
GSLs that are actively carrying traffic.

VII. EVALUATION

In this section, we evaluate SKYLINK and compare its
performance to reference schemes using data from OneWeb’s
LEO satellite network. We assess the system’s performance
across various operational scenarios and conditions. We first
explain the setup and the used parameters. Second, we in-
troduce the reference schemes. Third, we demonstrate its
scalability by evaluating performance across varying numbers
of users. We then show SKYLINK’s resilience by analyzing
the impact of network failures. Finally, we present a short
discussion on the parameter optimization of SKYLINK.

Setup and Parameters: To evaluate the performance of
SKYLINK and to compare it to the performance of reference
schemes, we employ our simulator described in Sec. VI. Table
II provides an overview of the simulation parameters. We
repeated all experiments for R = 100 times and present an
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Parameter Description Symbol Value

Number of repetitions R 100

Number of satellites N 636

Number of ground stations M 146

Number of time steps T 40320

Time step duration τ 15s

TTL Tmax 200ms

Simulated time frame start - 28.09.2023 08:26 UTC

Number of users - 25.4M

Average number of devices
per person for 25.4M users

d 0.003175

Average upload traffic per
device

ν 22.98 kbps

Data buffer size for ground
station m

Qmax
m 1GB

Data buffer size for sat. n Qmax
n 50MB

Capacity of a ground sta-
tion’s link to internet

Cv 50 Gbps

Delay between a ground
station m and the internet

Dtx
m 1-5 ms

Bandwidth for ISLs BISL 5 GHz

Aperture diameter of ISL
receivers

∅ 10 cm

ISL beam divergence angle θ 1.744 · 10−5 Rad

Pointing loss factor Lpointing 0.9

Noise temperature ISLs Tnoise 290 K

ISLs transmit power Ptx 0.1 W

Upload scale factor λ 0.08

Bandwidth for GSLs BGSL 250 MHz

Equivalent isotropic radi-
ated power

EIRP 34.6 dbW

Ground station receiver an-
tenna gain

Grx 10.8 db

GSL carrier frequency fc 19 GHz

Microwave background ra-
diation temperature

Tmr 275 K

TABLE II: Simulation Parameters

average over these repetitions. We use OneWeb’s LEO satellite
network with a near-polar Walker Star configuration. Ground
stations are placed in the world’s M = 146 largest cities,
which reflects the current scale of network infrastructures [46].
For the simulated time frame, N = 636 OneWeb satellites
were operational. OneWeb’s TLE data is available in [47].
To generate the incoming data, we use the global population
dataset in [45]. We assume 25 million users globally out of
8 billion people (i.e., d = 3.175 · 10−3), reflecting the high
annual growth and recent statistics. We estimate the annual
amount of generated traffic as 6 Zettabytes [48], where upload

traffic accounts for 8% of the total traffic [49]. Dividing by the
number of seconds per year and a total of 5.3 billion fixed and
mobile broadband network users [50], we set ν = 22.98 kbps.
The generated traffic per second varies depending on the local
time. tn,t is adjusted every hour, matching a characteristic
daily pattern observed from [51].

Reference Schemes: To ensure a fair comparison, we
include only baselines whose signaling overhead is not higher
than SKYLINK ’s fully distributed design, which uses only
locally available information. We exclude schemes that require
exchanging state information or a central controller. Con-
cretely, we compare SKYLINK to five reference schemes, each
highlighted with a distinct color in the upcoming figures for
clarity: (i) a bent-pipe solution that sorts only the established
GSLs randomly for its preference list (orange), (ii) a solution
based on Dijkstra’s algorithm that considers only the shortest
path to the ground (gray), and (iii) a solution using not just the
shortest, but the k-shortest paths to the ground [19], with k = 4
(green). (iv) A random solution that sorts the established links
randomly to generate its preference list (blue), (v) A solution
based on distributed Q-learning as proposed in [24] (beige).

In addition, we evaluate SKYLINK against a variant, non-
contextual SKYLINK (NC-SKYLINK), which omits both con-
textualization and the tile-coding mechanism, and is repre-
sented in purple.

A. Scalability

We begin by demonstrating the scalability of SKYLINK.
In Fig. 4, we present the results of SKYLINK and the
reference schemes for 12.7, 25.4, 63.5, and 127.0 million
users respectively for different metrics. Anchoring to publicly
reported Starlink adoption, we fit a simple exponential and
use the projected January 2026 levels (12.7 million users) as
a realistic upper bound for a constellations near-term user
base. We then use its 1×, 2×, 5×, and 10× multiples to
test scalability. The standard deviations across all metrics
are small, consistently below 1% of the average value. As
a result, while error bars are included in the graphs, they
remain barely noticeable. In Fig. 4a, we show the average
cost, which is the sum of delivered traffic weighted by its
respective delay and the drop rate weighted by Tmax as in Eq.
(14). In every scenario, SKYLINK generates the lowest cost
and outperforms distributed Q-learning, the random solution,
the bent-pipe approach, and the algorithms based on shortest
paths. The most significant improvement can be observed
compared to Dijkstra’s algorithm. Dijkstra’s algorithm only
uses the shortest path from the satellite back to the ground.
This results in frequent congestion of GSLs, higher drops and
consequently in higher cost. When using not only one but
k shortest paths, this effect is dampened. For 12.7 million
users, the k-shortest paths algorithm is still performing close
to SKYLINK. However, with an increasing number of users, it
shows that k-shortest paths suffers from the same inefficiencies
as Dijkstra’s algorithm. A similar effect can be observed
for the bent-pipe solution. For 12.7 million users, SKYLINK
reduces the cost by 5.0% compared to k-shortest paths, 11.3%
compared to NC-SKYLINK, 29.5% compared to the bent-pipe
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Fig. 4: Comparison of SKYLINK and the reference schemes for different metrics and different numbers of users.
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Fig. 5: Evolution of cost over a week for different user scales.

solution, 29.8% compared to distributed Q-learning, 54.4%
compared to the random approach, and 84.6% compared to
Dijkstra.

As the number of users, and consequently the data volume,
increases, some GSLs become overloaded. The random so-
lution performs comparably well because it actively utilizes
the available ISLs, leading to a more balanced distribution of
traffic across multiple GSLs. However, since the ISLs are used
randomly rather than strategically, this approach reduces the
drop rate but increases the delay, affecting the overall cost
negatively. The improvement of SKYLINK compared to NC-
SKYLINK is small but constant. The reason for this is that
NC-SKYLINK uses the same algorithm which is also fully
distributed and learns likewise. The improvement is hence
solely based on the additional tile-coding mechanism. In terms
of cost and for 25.4 million users, SKYLINK improves Dijkstra
by 91.7%, k-shortest path by 64.5%, the random solution by
52.5%, distributed Q-learning by 27.3%, and the bent-pipe
approach by 28.7%. Using contextualization and tile-coding
improves SKYLINK by 11.1% compared to NC-SKYLINK.

We present the average drop rate and the total network
throughput in Fig. 4b and Fig. 4c, respectively. Clearly, using
only the shortest path results in higher drop rates that increase

rapidly with the number of users. Although the k-shortest
paths approach initially achieves a low drop rate, it increases
even faster than that for Dijkstra’s algorithm as the number
of users grows. From 12.7 to 127 million users, the drop
rate for Dijkstra increases from 15.6% to 72.4%, while for
k-shortest paths, it rises from 0.6% to 38.6%. Consequently,
the total network throughput of shortest-path algorithms falls
significantly behind that of SKYLINK. For 25.4 million users,
SKYLINK achieves a 95.4% reduction in drop rate compared
to k-shortest paths and 99.2% compared to Dijkstra. It also
improves over distributed Q-learning, the bent-pipe approach
and the random solution by 56.1%, 75.6% and 87.6%, respec-
tively. However, both NC-SKYLINK and SKYLINK achieve a
drop rate of 0.3%, showing that the improvements in cost are
due to the fact that SKYLINK achieves a lower average delay
than NC-SKYLINK. In terms of throughput, this translates to
SKYLINK delivering 45.8% higher throughput than Dijkstra
and 6.0% more than k-shortest paths.

To analyze the performance of SKYLINK and the reference
schemes in greater detail, we not only examine aggregate
metrics over the entire simulation period but also investigate
how these metrics evolve over the course of a week. Note
that we display running means over half a day, which is why
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Fig. 6: Evolution of cost and throughput over a week for 25.4 million users.
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Fig. 7: Evolution of delay over a week for 25.4 million users.

the horizontal axis starts at 0.5 days. The comparison of costs
over time for 12.7 million users in Fig. 5a and 25.4 million
users in Fig. 5b provides three major insights: (a) shortest-path
algorithms lack scalability, (b) SKYLINK has a learning phase
and converges within days, and (c) SKYLINK is resilient to
fluctuations affecting other schemes. Most strikingly, the lack
of scalability in shortest-path algorithms is evident. For 12.7
million users, both Dijkstra and k-shortest paths exhibit signi-
ficant cost fluctuations throughout the day, which intensify as
the network becomes more congested with 25.4 million users.
Additionally, SKYLINK undergoes a learning phase during the
initial days, fully stabilizing within a week. Finally, SKYLINK
demonstrates resilience against the fluctuations that affect all
other reference schemes, maintaining consistent performance
even under varying network loads. Note that for 25.4 million
users, Dijkstra consistently incurs a cost greater than 50
throughout the entire period, which is why it is not visible
in Fig. 5b.

In Fig. 6, we show the evolution of drop rate and throughput
over a week for 25.4 million users. As for the cost, in Fig.
6a, we observe a daily pattern in the drop rate resulting from
the fluctuating amount of data in the network over the course
of a day. The fluctuation is higher for shortest path algorithms
and negligible for SKYLINK. In Fig. 6b, we additionally
included the data generation rate in the network. As a result
of the low drop rate, SKYLINK’s total throughput is close
to this generation rate. At the same time, the gap between
throughput and generation rate, especially at times with high
network loads is clearly visible for the reference schemes.
For the drop rate, improvements achieved by SKYLINK are
56.0% compared to distributed Q-learning, 75.5% compared
to Bent-Pipe, 87.5% compared to Random, 95.4% compared
to k-shortest paths, and 99.2% compared to Dijkstra. For
throughput, SKYLINK shows an improvement below 1.0%
compared to distributed Q-learning and Bent-Pipe because
these strategies are able to successfully deliver almost the
entire traffic. This improvement in throughput grows to 1.8%
compared to Random, 6.0% compared to k-shortest paths, and
45.9% compared to Dijkstra.

As mentioned earlier, the advantage of SKYLINK com-
pared to NC-SKYLINK is based on achieving a lower delay
of delivered data. To analyze this further, we present the
average delay of successfully delivered data for SKYLINK
and the reference schemes in Fig. 7. In particular, shortest-
path algorithms, such as Dijkstra and k-shortest paths, exhibit
relatively low delays. However, this is primarily because these
algorithms deliver fewer data in general, favoring data that are
closer to the ground. In contrast, SKYLINK delivers more data,
which would be dropped by the shortest path algorithms. Both
SKYLINK and NC-SKYLINK undergo a learning phase during
the first two days. SKYLINK maintains per-link estimates
conditioned on the current geometric context via distance-
based tile coding, whereas NC-SKYLINK collapses experience
across all contexts into a single global estimate. Since the
relative geometry of satellites and visible ground stations
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Fig. 8: Evolution of cost and average hops over a week for 25.4 million users and under GSL-failures.
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Fig. 9: Evolution of drop rate and throughput over a week for 25.4 million users and under GSL-failures.

continuously drifts with orbital motion, SKYLINK adapts its
ranking to the present context, while NC-SKYLINK keeps
averaging over mismatched situations. This leads to a gradual
unlearning with a higher delay, as visible in Fig. 7.

B. Resilience

In the previous subsection we demonstrate that SKYLINK
is resilient to daily fluctuations of network traffic. In this
subsection, we focus on SKYLINK’s ability to maintain its
superior performance even under network failures. We restrict
our analysis to GSLs failures because they have the higher
impact. Our simulations show that, even under a very unlikely
scenario in which 50% of satellites lose all ISLs, every strategy
faces cost increases of less than 10%. This is because the
capacity of the GSLs is the network’s bottleneck, as the
following results demonstrate.

In Fig. 8a, we present the cost evolution over six days,
during which 3% of the satellites experience GSLs outages
starting on the third day. Such failures commonly appear in
LEO satellite networks [30]. The challenge for the routing
strategies is to detect this disruption and adapt by rerouting
traffic through the GSLs of unaffected satellites. On the fifth
day, the network is restored to its normal state, providing an
opportunity to evaluate how effectively the approaches return
to regular operation. As expected, all the reference schemes
experience increased costs during the third and fourth day,
when network failures persist. This increase is 67.6% for
the bent-pipe strategy, which heavily relies on stable GSLs
and still 23.2% for k-shortest paths. This increase is due to
their inability to efficiently adapt to the reduced availability
of GSLs, leading to higher congestion. In contrast, SKYLINK
demonstrates its resilience by quickly rerouting traffic through
unaffected satellites, minimizing the impact on overall costs,
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Fig. 10: Average cost of SKYLINK for different parameters.

which increases less than 10%.
The effect of rerouting data is illustrated in Fig. 8b by

analyzing the average number of hops taken by data traversing
the network. Notably, the majority of data is received in
high-population areas near ground stations, allowing for direct
transmission to the ground. As a result, the average number
of hops is close to 1 for all strategies, and for the bent-pipe
strategy, it remains consistently at exactly 1. When network
failures occur, the average number of hops for SKYLINK
and NC-SKYLINK increases significantly compared to the
other strategies. The gradual increase seen in the figure is
an artifact of the running mean. This shows that SKYLINK
quickly detects failures and promptly reroutes traffic, effec-
tively mitigating the impact on overall costs. A similar effect
can be observed for distributed Q-learning with the significant
difference that distributed Q-learning is not able to directly
return to normal operation as soon as the network recovers.
In Fig. 9, we analyze the drop rate and throughput during
the failure scenario. As expected, the drop rate increases for
all reference schemes during the period of GSLs outages.
However, SKYLINK maintains a significantly lower drop rate
compared to the other strategies. While the drop rate of k-
shortest path increases from 5.7% to 7.5% and the drop rate of
the bent-pipe strategy from 1.1% to 3.7%, SKYLINK’s average
drop rate does not exceed 0.7% even during the failures on the
third and forth day. Note that Dijkstra’s drop rate consistently
exceeds 12%, which is why it is not included in Fig. 9a.
Correspondingly, the throughput for the reference schemes
declines during the failure period, reflecting their inability
to manage the rerouting efficiently. In contrast, SKYLINK
sustains a throughput that remains close to the data generation
rate, showing its resilience also under network failures.

C. Parameter Optimization

SKYLINK uses a tile-coding mechanism described in
Sec. V, which relies on two main parameters: The distance
precision and the number of discretizations, which we explain

in the following. The continuous context space, defined by
the distances to a satellite’s neighbors, needs to be quantized.
The precision or granularity of this quantization involves a
trade-off: if the granularity is too low, SKYLINK fails to
sufficiently distinguish between different contexts, resulting
in a general solution that largely ignores the distance to
neighbors. Conversely, if the granularity is too high, the
number of samples per context becomes too low, making it
harder for SKYLINK to learn effectively. The second parameter
pertains to the number of overlapping partitions used in the
tile-coding mechanism. This parameter also presents a trade-
off: a single partition leads to overly sharp transitions between
contexts, making the model overly sensitive to small changes.
In contrast, too many partitions blur the distinctions between
contexts, potentially masking important variations.

Both trade-offs are visualized in Fig. 10. The tested gran-
ularity for the distance quantization ranges from 20 km to
2000 km, and the tested number of partitions ranges from 1
to 6. Each tile is labeled with the average cost of SKYLINK
over a period of 7 simulated days and is colored using a
heat map scheme based on these values. Concerning the
distance precision, it is clearly visible that 20–50 km are too
granular, resulting in a low number of samples per context,
while 1000–2000 km are too coarse, leading to a lack of
differentiation between contexts and a generalization that
overlooks variations. The lowest average cost is obtained for
a precision of 500 km. The 500 km quantization renders
SKYLINK robust to errors in the estimation of the position of
satellites and ground stations. Small deviations rarely change
the active tile and therefore have negligible impact on the
chosen actions. The impact of the number of partitions is
smaller compared to the impact of distance precision; however,
for higher granularities, it becomes increasingly important to
use more partitions to avoid sharp transitions between contexts.
In our evaluation, the lowest average cost was achieved using
2 partitions. Based on these findings, we select 500 km for
the distance precision and 2 partitions as the parameters for
SKYLINK.

Further experiments showed that other possible contexts
such as the data load at the satellite, local time of the
day, UTC, or the satellite’s location do not improve the
performance compared to SKYLINK using the distance to its
neighbors as per-arm context. Likewise, adding these contexts
to the distance to form a larger context space does not improve
the performance. Most probably, the direct influence of the
distance to its neighbors on link capacity and link delay are
the cause for its relevance during learning.

VIII. CONCLUSION

In this work, we propose SKYLINK, a distributed, scalable
and resilient learning approach to minimize delay and drop
rate in LEO satellite networks. Considering global traffic,
SKYLINK selects ISLs and GSLs in each time slot to route
user data to the internet. To address challenges like the dy-
namic topology of LEO satellite networks, global-scale traffic,
potential network failures, and routing complexity, SKYLINK
uses a contextualized MAB solution, learning link preferences
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based on relative distances to satellites’ neighbors. It employs
tile coding and the UCB criterion for effective generalization
over multiple contexts. We evaluate SKYLINK using a new
simulator for global-scale simulations of stream-based data
traffic. Extensive simulations show SKYLINK outperforms
reference schemes in delay, drop rate, and throughput, even
under high traffic and satellite outages.

While our evaluation targets LEO, SKYLINK’s graph-based
formulation, together with its context-aware link ranking and
water-filling mechanism, is not restricted to LEO. Hybrid
LEO–MEO–GEO and airborne operation can be realized by
enlarging the node/link sets and augmenting the per-link
context. In future work, we will scale our experiments to larger
constellations (e.g., Starlink), incorporate alternative Quality-
of-Service objectives, and integrate MEO and GEO satellites
as well as airborne relays to evaluate the scalability and
resilience benefits of multi-layer deployments. Additionally,
a quantitative comparison of SKYLINK’s energy consump-
tion with fixed-path routing and centralized approaches is
an interesting direction. We expect SKYLINK’s per-satellite
energy requirements to be low given its extremely small time
complexity and its local-information design.
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