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Abstract—The importance of Massive Machine-Type Commu-
nications (mMTC) in Beyond 5G and 6G networks is supported
by the ever-increasing number of connected devices in what are
known as massive Internet of Things (IoT) networks. These
networks bring unprecedented challenges for the distribution
of the available communication resources because the allocation
problems often lead to combinatorial optimization formulations
which are known to be NP-hard. A fact that limits the per-
formance of state-of-the-art techniques when the network size
increases. To address this challenge, we take a new direction and
propose a method based on statistical physics to address resource
allocation problems in large networks. To this aim, we first show
that resource allocation problems have the same structure as
the problem of finding specific configurations in spin glasses, a
type of disordered physical systems. Based on this parallel, we
propose Momentum Survey Propagation, a resource allocation
method to minimize the interference in mMTC networks. Our
proposed approach extends the Survey Propagation method of
statistical physics. Specifically, it exploits the so-called momentum
technique, widely used in the context of neural networks, to
improve the convergence properties of Survey Propagation. Our
implementation is the first application of Survey Propagation to a
wireless communication network. Through numerical simulations
we show that Momentum Survey Propagation is a promising tool
for the efficient allocation of communication resources in mMTC.

Index Terms—Massive Machine-Type Communications, Sur-
vey Propagation, Resource Allocation, Interference Minimization.

I. INTRODUCTION
A. Motivation and Challenges

The emergence of massive Internet of Things (IoT) net-
works ratifies the persistent relevance of Massive Machine-
Type Communications (mMTC) in Beyond 5G and 6G net-
works [1]-[3]. In mMTC, millions of devices per square
kilometer occasionally transmitting small amounts of data are
considered [4]. One of the key challenges to support such
massive communications is the scalability of radio resource
management methods that avoid congestion in the radio access
network [5], [6]. This challenge comes from the fact that the
allocation problems often lead to combinatorial optimization
formulations which are known to be NP-hard. Moreover, the
complexity of the allocation problem is not constant but
depends on the number of available resources, the number
of devices, and the network topology.

Recent research shows that data aggregation is a potential
solution for the congestion problem in mMTC [7], [8] because
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the devices do not communicate directly with the base stations
providing the connectivity. Instead, a group of devices, termed
aggregators, are tasked with the collection of data from their
associated devices and the subsequent transmission to the base
stations. Such hierarchical structure reduces the number of
connections at the base stations, the power consumption, and
improves the resource allocation efficiency [9].

Research on data aggregation has mainly focused on ana-
lyzing its benefits, and on the distribution of resources within
each aggregator [6]-[8], [10]-[15]. However, little attention
has been paid to the allocation of resources to the aggregators
or the reuse of resources among them. This is a challenging
problem because the larger the number of connected devices,
the higher the density of the required aggregators and the more
difficult it is to formulate tractable optimization problems.
Moreover, a higher density of aggregators means that the
distance between them is reduced and the interference caused
by the reuse of resources grows. In this paper, we aim at
filling this void by proposing a resource allocation method
to minimize the interference in a mMTC network using
data aggregation. Our proposed approach is based on the
Survey Propagation method from statistical physics. Survey
Propagation is a heuristic solution developed to solve large
discrete optimization problems in a type of disordered phys-
ical systems called spin glasses [16]. By drawing a parallel
between mMTC networks and spin glasses, i.e., by considering
that the aggregators can be seen as the particles in a spin glass,
we show how Survey Propagation can be adapted to address
resource allocation problems in mMTC networks.

B. Related Work

Research interest in data aggregation has focused on ana-
lyzing the benefits of the scheme [10], [11] and on the distri-
bution of resources within each aggregator [6]-[8], [12]-[15].
Using stochastic geometry, the authors in [10] characterize the
interference and coverage performance of a cellular network
serving a massive number of Machine-Type Communication
Devices (MTCDs). Specifically, they propose an analytical
framework to evaluate the success probability of the MTCDs’
transmissions, the average number of served MTCDs and the
average channel utilization. This work is extended in [11],
where the authors introduce a hybrid access protocol that
exploits orthogonal and non-orthogonal multiple access for the
communication between the MTCDs and the aggregators.

The allocation of available resources to the MTCDs served
by a single aggregator is investigated in [6], [12], [13]. Specif-
ically, in [6], the authors focus on how to divide the resources
among the two communication phases, i.e., from MTCDs to
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aggregator and from aggregators to base stations. A similar
scenario in considered in [12] where a group-based random
access and data transmission scheme is proposed. In [13],
the trade-off between network utility and resource allocation
fairness under outage probability constraints for the uplink
communication is investigated. Moreover, the fulfillment of
MTCDs’ Quality of Service (QoS) requirements is considered
in [7], [8], [14], [15]. All the aforementioned works assume
that the aggregators have preallocated resources and focus on
maximizing the efficiency in the communication with their
associated MTCDs. However, they do not investigate how the
resources are distributed to the aggregators or how interference
is handled among neighboring ones.

Combinatorial optimization problems, such as the allocation
of resources to aggregators in mMTC, are NP-hard. Therefore,
finding the optimal solution at a large scale is an open research
question. Nevertheless, research effort has been put in the
development of efficient heuristics [17]-[22]. The available
solutions can be classified depending on the approach fol-
lowed, i.e., message-passing algorithms [17], random variable
assignment [18], greedy heuristics [19], [20], and learning
approaches [21], [22]. The Belief Propagation method de-
scribed in [17] is a well-known message-passing algorithm
to solve combinatorial problems. Its main characteristic is
the calculation and exchange of status messages among the
variables in the problem in order to assign their values. In [18],
the authors propose Walksat, a heuristic method to solve binary
combinatorial optimization problems. The main idea behind
Walksat is to randomly flip the values of the variables until
all constraints are satisfied. Greedy heuristics are exploited in
[19], [20], where the optimization problem is formulated as a
graph-coloring problem and the variables are fixed according
to some predefined order. Recently, graph neural networks
architectures have been used to find solutions to constraint
satisfaction problems [21], [22]. While a promising approach,
so far graph neural networks have been considered for smaller
networks and when the ration between the number of values to
be assigned and variables is large. In fact, the drawback of the
aforementioned approaches is that their performance decreases
when the problem size increases and when the number of
available resources is very limited, a fact that hinders their
applicability in mMTC networks. To overcome this drawback,
we propose a novel resource allocation strategy based on
Survey Propagation, a message-passing method from statistical
physics developed by [16]. Although Survey Propagation has
shown impressive results in solving large binary combinatorial
problems [16], [23], [24], it has not been yet applied to
problems outside the physics domain.

C. Contributions

We investigate the resource allocation problem in mMTC
networks with data aggregation. To this aim, a network con-
sisting of a single base station and a large number of MTCDs
is considered. Our goal is to develop a scalable resource
allocation method for the distribution of resources among the
aggregators that minimizes the interference in the network by
leveraging methods from statistical physics. The contributions
of the paper are summarized as follows:

e Innovative Network Model: We propose a model of the
mMTC network inspired by spin glasses. Moreover, we
formulate the resource allocation problem as a Constraint
Satisfiability Problem (CSP) to find the resource alloca-
tion solution that minimizes the interference. Our model
highlights the parallels between resource allocation in
mMTC networks and minimum energy configurations in
spin glasses.

e Momentum Survey Propagation Method: We propose a
resource allocation method to distribute radio resources
to the aggregators in a mMTC network. Our approach,
termed Momentum Survey Propagation, extends the Sur-
vey Propagation method proposed in [16] and minimizes
the interference in the network. Specifically, it exploits
the so-called momentum technique, widely used in neural
networks, to improve the performance of Survey Propa-
gation making it more effective for large-scale network
applications. Ours is the first implementation of Survey
Propagation in wireless communication networks.

e Superior Performance: Through numerical simulations,
we show that our proposed Momentum Survey Propaga-
tion outperforms reference approaches, namely, Survey
Propagation [16], Belief Propagation [17] and Walksat
[18]. Moreover, it is able to find zero interference allo-
cation solutions at least 40% of the times and when the
reference schemes fail to do so.

The rest of the paper is organized as follows. In Sec. II, we
discuss parallel between spin glasses and mMTC networks.
The considered system model is described in Sec. III and the
corresponding resource allocation problem is formulated In
Sec. IV. Our proposed Momentum Survey Propagation is ex-
plained in Sec. V and its convergence properties are discussed
in Sec. VI. Numerical performance results are presented in
Sec. VII and Sec. VIII concludes the paper.

II. SPIN GLASSES AND MMTC NETWORKS
A. Spin Glasses

Spin glasses are a fundamental type of disordered system
studied in statistical physics. They refer to magnetic systems in
which conventional ferromagnetic or antiferromagnetic long-
range orders cannot be established due to some structural
disorder. As a result, the magnetic moments or spins com-
posing the system prefer to be arranged in random directions
[25]-[27]. One way to imagine, or model, spin glasses is
to assume that the spins are located at fixed points in a
regular lattice, see Fig. 1, with disorder introduced via random
couplings, or interactions, that follow a suitable distribution
[27]-[29]. The spin glass model can be very well applied to
describe communication systems. In the spin glass model of
the mMTC network, each spin represents one aggregator and
its direction corresponds to the orthogonal resource allocated
to it, e.g., a frequency band or a time slot. For example, in
Fig. 1, we assume eight orthogonal resources, this means,
eight possible directions (North, South, East, West, North-
East, North-West, South-East and South-West). To highlight
the different directions, we have used different colors and
patterns for each of them. The random coupling between two
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Fig. 1: Simplistic depiction of a spin glass in a grid.

spins corresponds, in the mMTC case, to the interference
caused by a pair of neighboring transmitting aggregators using
the same orthogonal resource. Since nature has an invariable
tendency to satisfy the principle of minimum energy [30],
statistical physicists are often interested in finding minimal
energy configurations in order to describe the equilibrium
properties of relevant systems, like spin glasses [27]-[29].
From a communication perspective, we have a similar aim.
Our goal is to find the resource allocation solution (orientation
of spins) which minimizes the interference in the system
(yields the minimum energy in the spin glass).

B. Constraint Satisfiability Problems (CSP)

CSPs are strongly related to the theory of spin glasses
because the problem of finding the minimal energy config-
uration of the spin glass model can be written as a CSP. At
the core of combinatorial optimization theory, CSPs deal with
the question of whether a set I' of constraints between a set
X of discrete variables can be simultaneously satisfied. Each
constraint is a clause formed by the logical disjunction (OR) of
a subset of the variables or their negations [16]. The solution
of the CSP is an assignment of the variables that guarantees
that all the constraints in the problem are satisfied. The
clauses in the CSP are associated to the interactions between
neighboring spins and the orientation of each. The minimal
energy configuration is an assignment that satisfies all clauses.
Similarly, the resource allocation problem in mMTC networks
can be formulated as a CSP. Details of such formulation are
presented in Sec. IV.

Finding the minimal energy configuration and, similarly,
the resource allocation that minimizes the interference are
combinatorial problems. The design of algorithms to find
configurations that fully satisfy the CSP and the determination
of whether a given CSP can be satisfied, is a challenging task
[16], [23], [32]. This is because finding a solution heavily
depends on how constrained is the particular problem at hand.
Let us define the ratio 6 between the number | X| of variables
and the number |I'| of constraints in the CSP as
i
X
There exists a critical threshold 6. for which the CSP becomes
unsolvable. When 6 < 6., the CSP can be satisfied. Con-
versely, when 6 > 0. the CSP is unsatisfiable [16], [23], [31].
Note that within the satisfiable region 6 < 6. the complexity
of finding a solution is not constant. Physicists have found that
there exists an intermediate threshold 6 that specifies a region
04 < 0 < 6. where a CSP is still satisfiable but the solution
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Fig. 2: Change in the solution space as 6 increases. Figure based on [31],
[32].
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is hard to find [16]'. Such difficulty comes from the fact that
when 6 increases, the solution space becomes clusterized, as
depicted in Fig. 2.

In Fig. 2, each circle represents a solution of the CSP.
Filled circles mean the allocation satisfies the CSP, and empty
circles denote that the allocation does not satisfy all the
clauses. For 6 < 64, the satisfying allocation (filled circles)
are close to each other forming one single cluster. However,
for larger values of 6, groups of satisfying allocations are
apart forming many smaller clusters. The number of clusters
increases exponentially until the CSP becomes unsatisfiable
[16]. In the region 0; < 6 < 6., the allocations in separate
clusters are far apart and moving from one allocation in a
cluster to some other allocation in another cluster requires
simultaneously changing the value of many of the considered
variables [17], [32].

For resource allocation in mMTC networks, the solution
of the CSP is highly dependent on the network topology, the
density and the number of available time-frequency resources.
The threshold 6. indicates the minimum number of time-
frequency resources needed to find an allocation solution that
minimizes the interference. Moreover, finding solutions in the
range 0y < 6 < 6, allows us to reduce the number of required
resources compared to solutions in the range 6 < 64. In this
paper, we propose Momentum Survey Propagation to find a
solution to the resource allocation problem, especially in the
range 0y < 6 < 6.. The parallel between spin glasses and
mMTC networks is summarized in Table I, where the main
components of a spin glass model are mapped in a one-to-one
manner to the main elements in the network.

III. SYSTEM MODEL

We consider a mMTC network, as depicted in Fig. 3. Similar
to [33]-[35], the network is formed by a single Base Station
(BS) and K single-antenna MTCDs. We denote by K the
set containing all MTCDs. To make an efficient use of the
communication resources, a subset M C K of MTCDs act
as aggregators®. According to their locations, the remaining
MTCDs k € MC are associated to one aggregator m € M,
with £ = M U M. In our model, each MTCD communi-
cates with a single aggregator. The aggregator transmits the
aggregated data from different MTCDs to the BS through
orthogonal dedicated channels depicted as dotted lines in Fig.

'Other works have identified more intermediate thresholds to make a finer
characterization of the behavior of the solution space [31].

Note that the aggregators in our model can be replaced by femto or pico
base stations.



Spin Glass mMTC Network
Spin MTCD

Scenario Orientation Time-frequency resource

Interaction Interference
Goal Find the minimal energy Find the allocation that
configuration minimizes the interference
Problerp Constraint Satisfiability Problem
Formulation
Solution .
Method Momentum Survey Propagation

TABLE I: Parallel between spin glasses and mMTC networks.

3. We assume that the BS has N time-frequency resources
available for the communication between the aggregators and
the MTCDs. These N resources are divided into () € N,
@ < M, resource pools. Every aggregator is assigned a
resource pool g € Q, where Q is the set of available resource
pools.

To minimize the interference in the network, we aim at
orthogonal resource allocation, i.e., neighboring aggregators
cannot share the same resource pool q. Two aggregators m
and n are said to be neighbors if the received power an’fn eR
of a test interference signal s,,, € C sent from m and
received at n is above a given threshold p € R. The wireless
channel between two aggregators m and n is characterized
by the channel coefficient h,, ,. Moreover, we assume each
aggregator uses a fixed transmit power pl* € R for the
communication with its associated MTCDs?>. The power p%’fn
of the received interference signal is calculated

2, Tx

pg),(n = |hm,n| Dp T+ Jvznv )

where o2, is the noise power of aggregator m. Addition-

ally, channel reciprocity between aggregators is assumed, i.e.,
P = hn,m. Consequently, pi*, = pi, .

The BS controls the resource allocation, i.e., it decides
which resource pool ¢ is assigned to each aggregator. The
binary variable z,,, € {0,1}, indicates if resource pool g is
assigned to aggregator m. To minimize the interference in the
network and make an efficient use of the available resources,
we impose two constraints on the resource allocation. The
first constraint ensures that each aggregator m is assigned one
resource pool ¢, i.e.,

Y wgm=1, YmeM. 3)

qeQ

The second constraint hinders the allocation of the same
resource pool ¢ to two neighboring aggregator m and n, i.e.,

Vm,n e M,q e Q. “4)

TqmTqn =0,

We model the considered network as a graph G = (V, €),
where V is the set of vertices and £ is the set of edges. In
our case, the set 1V of vertices contains all the aggregators
m € M such that V = M. The set £ of edges e = (m,n)
contains the links between neighboring aggregator m, n, i.e.,
& ={e=(mmn):mn eV pis, > pu} If the received
power p%’fn € R of the test interference signal sent from m
and received at n is above the threshold u, an edge between

3Power allocation can be done at each aggregator to maximize the perfor-
mance of the communication with its respective MTCDs.

aggregators m and n is established in the network graph G to
indicate that they are neighbors. Note that although a single
BS is considered, the model can be easily extended to multiple
BSs by considering each of them separately. The potential
interference between neighboring aggregators that connect to
different BSs, can be included by adding these connections in
the network graph G of each of BS.

IV. PROBLEM FORMULATION

In this section we formulate the time-frequency resource
allocation problem. Initially, we present the corresponding
optimization problem and describe its properties. Next, and to
facilitate the application of our proposed Momentum Survey
Propagation method, we reformulate the problem as a CSP
and explain its corresponding factor graph representation.

A. Optimization Problem

Our goal is to find a resource allocation solution that
minimizes the interference in the network. As the @ avail-
able resource pools are orthogonal, interference occurs when
neighboring aggregators communicate using the same resource
pool g. We term such event as a conflict. Finding the alloca-
tion solution that minimizes the interference is equivalent to
finding the solution that minimizes the number of conflicts.
Considering the constraints in (3) and (4), the optimization
problem is written as

Q M M
minimize Z Z Z TqmTqn (5a)
{'rQJTL}qEQ, meM  g=1n=1m=1
subject to Z Tgm =1, Ym e M, (5b)
qeQ
zgm €{0,1}, Vge QmeM
(50)

The problem in (5) is a non-linear integer programming
problem which is known to be NP-hard. As a consequence,
up to now, there is no polynomial-time algorithm to find its
optimal solution.

B. Formulation as Constraint Satisfiability Problem

We propose Momentum Survey Propagation to solve the
problem in (5). Our approach is a message-passing algorithm
based on Survey Propagation. To facilitate its description in
Sec. V, we reformulate the problem as a CSP.

Consider the graph G introduced in Sec. III. The CSP, de-
noted by +, is formed by the set X = {z¢m :m €V, g € Q}
of the binary variables x, ,, in (5c) and the set I' of logical
constraints in (5a) and (5b). The goal is to find a resource allo-
cation solution X = ((z1,1,...,20,)", ... (Tg,015 - z@.m) ),
where (-)T is the transpose operation, that ensures all the
constraints in I' are satisfied, in other words, v = true. In
the following, we rewrite the objective function in (5a) and
the constraint (5b) as logical clauses.

The objective function in (5a) aims at the minimization of
the number of conflicts. To this aim, we introduce constraint
a. for all edges e € €. Formally, a. is defined as

e = (T1m VT1n) A T2.m VT2n) A A (a_chm \/fQ_’n)7 (6)
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Fig. 3: Example of the considered network with one BS, M = 5 aggregators
and a total of K = 15 MTCDs.

where A and V are the logical conjunction (AND) and dis-
junction (OR) operators, respectively, and Z, ,, is the negated
variable z,,. The set of all o, constraints in the CSP is
denoted by A.

Constraint (5b) states that each aggregator should be as-
signed one resource pool. This constraint is rewritten for every
aggregator m as the logical clause [3,,, defined as

Bm = (T1,m V Tam V ... VZQm)- @)

The set of all 3,, constraints is denoted by B. The CSP ~ is
then written as the logical conjunction of all the a, and 3,

constraints as
Y= </\ae>/\ < /\ 6m>- ()
ec& meM

Let us now define the cost function C' as the number of
unsatisfied clauses in (8). A solution X is optimal when
~¥(X) = true and consequently, C' = 0. This means, there
is no interference between neighboring aggregators because
no resource pools are shared among them. Given a network
graph G, the corresponding CSP ~ is formed by |X| = QM
variables and |I'| = | A| + |B| = Q|| + M constraints.

C. Factor Graph Representation

A better understanding of y can be achieved by using
the factor graph representation of the CSP [24]. A factor
graph is a bipartite graph formed by two types of vertices,
namely, variable nodes and functional nodes*. This means,
the factor graph does not represent the mMTC network but
the constraints that need to be fulfilled in order to achieve
minimum interference. The factor graph provides a graphical
description of the relation between the aggregators in the
network based on the constraints in the CSP, and it is helpful
to explain the resource allocation method proposed in Sec. V.

Consider the example in Fig. 4. On the left side, in Fig. 4a,
a small mMTC network with three aggregators is depicted.
The set of vertices is given by V = {m,n,l} and the set
of edges by & = {(m,n), (n,l)}. To build the corresponding
factor graph, the constraints a and f3,,,, defined in (6) and (7)
respectively, are considered. Specifically, the variable nodes,
depicted with circles in Fig. 4b, are the variables x,,, € X
that determine whether resource pool ¢ is allocated to aggre-
gator m or not. The set of all variables nodes is then the

4Note that the variable nodes and functional nodes do not correspond to
the aggregators in the mMTC network, but to the variables and constraints
associated to the CSP.

(a) Conventional graph.

o Variable node

D Functional node

(b) Factor graph.

Fig. 4: Conventional graph and factor graph representations of a network with
M = 3 aggregators and ) = 3 available resources.

set X. The functional nodes, shown with squares in Fig. 4b,
correspond to the constraints o, € A and 3, € B defined
in (6) and (7), respectively. The set of all functional nodes is
I' = AU B, and we term by ¢ € I any functional node. An
edge between a variable and a functional node means that
the variable node is included in the clause represented by
the functional node. We denote by X (() the set containing
all variable nodes x4 ., considered in clause ¢. Similarly, we
denote by I'(x,,») the set of functional nodes ¢ to which the
variable node x, ., is connected. The type of line in the factor
graph representation indicates whether the variable xz, ,, or
its negation T, ,, is used. In Fig. 4b, the edges connecting
the variable nodes with the functional nodes ( = «. are
depicted with dashed lines because the negated variables Z, .,
are considered in this clause. On the contrary, the edges
connecting the variable nodes with the { = (,,, constraints are
depicted with solid lines because the non-negated variables
Zq,m are considered. Edges between two variable nodes are
not possible since variable nodes can only be related through
clauses, i.e., through functional nodes.

To highlight the relationship between functional and vari-
able nodes, let us introduce some additional definitions. We de-
fine I (x,..m) as the set of functional nodes in which z, ., ap-
pears non-negated (solid lines in Fig. 4b), and '~ (z, ,,,) as the
set of functional nodes in which z, ,,, appears negated (dashed
lines in Fig. 4b), ie., D(zgm) = T (xgm) U T (Tgm)
Additionally we define I';(zq,m) and T'¢(zq,m) as the sets
containing all the functional nodes connected to x, ,, which
tend to make variable node ., satisfy (I'}(z4,m)) or not
satisfy (Fg(x%m)) clause (, respectively. From the definitions
of a. and (3,, in (6) and (7), it is clear that a variable node
Zq,m can be connected to multiple o, nodes but only to one



Bm node. Consequently, for functional nodes ( = a, the sets
%, (2gm) and Ty, (24,,) are defined as
Fsae (xq,m) = A(xq,m)7 )
Lo @gm) = Bin,s (10)
where A(z4,,) is the set of functional nodes a. connected

to z4m. In contrast, for functional nodes ( = f3,, the sets
I'5, (zgm) and T'y (z4,m) are defined as

(1)
(12)

,ng (xq,m) = Bm,
F%m (xq,m) = A(xq’m)

V. MOMENTUM SURVEY PROPAGATION

In this section, we present our proposed Momentum Survey
Propagation for resource allocation in mMTC networks. First,
we describe Survey Propagation as presented in [16] in Sec.
V-A. In Sec. V-B we describe the update procedure for
the surveys, and introduce the proposed resource allocation
algorithm in Sec. V-C.

A. Survey Propagation

The Survey Propagation method proposed in [16] is a
physics-based approach to solve CSPs. In a nutshell, Sur-
vey Propagation is an iterative message-passing algorithm.
The main idea behind it is the propagation of statistical
information, or surveys, between the vertices of the factor
graph. Note that Survey Propagation does not run over the
mMTC network represented by the graph G, but over the
factor graph representation of the resource allocation problem
associated to it. Moreover, the surveys are not physically
transmitted messages between the BS and aggregators, but are
an abstraction of messages “interchanged” between the nodes
in the factor graph, i.e., between variable and functional nodes.

The surveys are used to identify the state of the variables
Z4,m in clusters that satisfy the CSP, i.e., whether the variables
Zq,m are fixed to a certain logical value "0" or "1", or if they
are in an indifferent "*" state. In other words, if resource pool g
cannot be allocated to aggregator m (rq,., = "0"), if resource
pool ¢ must be allocated to aggregator m (zq,m,m = "1"), or if
aggregator m is indifferent to the allocation of g (z4,mm = "*").
For example, such cases occur when a neighboring aggregator
has been already allocated resource pool g, when the only
available resource pool for aggregator m is ¢, and when
aggregator m has many available resource pools and none of
its neighbors are already using them, respectively. When the
state of a variable x, ,, is fixed to "0" or "1", it can be removed
from the problem. This is because, for the satisfaction of the
CSP, its value has been set. This means, only the logical value
of the variables in the indifferent state remains to be identified.
By repeating this procedure, the original problem is reduced.
In every iteration, a smaller problem is considered until the
space of satisfying solutions is formed by a single cluster.

The survey transmitted from any { to a connected variable
node x,,,, is a real number 7¢_, . € [0, 1]. The survey trans-
mitted from a variable node x,,,, to a connected functional
node ¢ is a triplet my, ¢ = (Ty oMy e Tro L)
formed by three real numbers T m—¢? Ty e and ’/T;(N’L e

These surveys can be interpreted as probabilities of warning
[17]. Specifically, n¢—., ,, can be seen as the probability that
functional node ¢ warns the variable node x,,,, to take the
correct value in order to satisfy clause (. Similarly, W;‘qmt e
Ty m—c and ﬂ;wn _,¢ can be interpreted as the probabilities
that variable node z, ,,, sends a warning to functional node ¢
informing it that z, ,,, cannot satisfy the clause (73 ), that
it can satisfy it (77  _, .) or that it is indifferent (77 ).
All these surveys are recursions calculated from the messages
received from neighboring nodes in the factor graph of the
CSP. Let us introduce the following definitions

Pcsvxq,m, = H (1 - ng—ﬂtq,m,) ) (13)
€€T% (2q,m)
Poo= I (=mesa,.) (14)

SEFE(CEq,m)

2 eta(Zq,m) are defined in (9)
and (10) for a, € A, and in (11) and (12) for the j3,,, € B. The

where the sets I'Z (zq,m) and '

survey o, ¢ = (T oMo oMy ) transmitted
from x4, to ¢ is calculated as [17]
T e = (1= Play | Pay o (15)
Trpmose = 1= Py ] Plagus (16)
Tr;q,mﬁg :PCS,:Cq,mPCU,xqm' (17)

The survey from ( to x4, is calculated as [17].

[1

u
[ ZTg,n—>C ]
u s * :
Zq,n €X(O\Tq,m qum,—>< " quyn_}c ' Tratq,n_)(clg)

T]C_>‘73q,7n =

B. Momentum-based Survey Update

The surveys in (18) are calculated for each node in the factor
graph according to the surveys received from neighboring
nodes. That means, their calculation is an iterative process
that concludes when the surveys reach a steady value, i.e., the
difference between the surveys calculated in two consecutive
iterations is less than a given threshold ¢ for all nodes, or when
the maximum number Tsp of iterations is reached.

The convergence of the surveys is guaranteed on graphs
with a tree structure [17]. However, the graphs associated
to mMTC networks contain loops. Therefore, to improve the
convergence properties of Survey Propagation when applied to
mMTC networks, we investigate the concept of momentum.
The idea of momentum was originally introduced in [36] as a
tool to stabilize the optimization process of Belief Propagation.
It is also widely used in the context of Neural Networks. Here,
we adapted it to Survey Propagation.

Algebraically, momentum is defined as the weighted sum
of the surveys at two consecutive times stamps tsp and tsp — 1

Ne—sagm(tsp) = (1= p)ncsa, ,, (tsp) + e s, ,, (tsp — 1)
(19)



where 7z, . (tsp) is the value of survey 74, at time
stamp tsp and p is the momentum factor. The value of u
controls the rate at which the surveys are updated’.

Algorithm 1 summarizes the procedure used to calculate
the surveys. First, the surveys are randomly initialized for all
the nodes in the factor graph, and the maximum number of
iterations Tgp, the convergence threshold e, the momentum
factor p and the indicator variable convergenceSP are set
(lines 1-2). While the surveys have not yet converged, a
random permutation is generated for the order in which an
individual survey will be updated (lines 3-4). Using this order,
the surveys are updated using (18)-(19) (line 5). Then, for
every survey, we evaluate whether the value has converged
according to the predefined threshold e (lines 6-12). If the
condition is not fulfilled for all the nodes in the factor graph,
the procedure is repeated (line 10). On the contrary, if the
values of n¢ 4, ., have reached convergence, then these values
are used as surveys (line 15). If the values of the surveys do
not converge and the maximum number of iterations Tgp is
reached, the surveys are initialized once again and Algorithm
1 runs once more.

C. Resource Allocation Algorithm

In this section, we describe the proposed Momentum Survey
Propagation algorithm to find the resource allocation solution
that minimizes the interference in mMTC networks. It is an
iterative approach that aims at fixing the value of the variables
Z4,m based on the exchanged survey messages. In other words,
in each iteration ¢t = 1, ..., T, where T is the maximum number
of iterations, the algorithm fixes the allocation of a resource
pool ¢ to one or more aggregators m according to the values
of the surveys.

The proposed algorithm is presented in Algorithm 2. The
first step is to formulate the resource allocation problem as a
CSP and build the corresponding factor graph, as explained
in Sec. IV (line 1). Second, the algorithm parameters and
variables are initialized (line 2). Let X'* C X be the set of
variable nodes x, ,,, whose value has been fixed. The execution
continues while there are still aggregators without an allocated
resource pool g, i.e., X* # X, while the number ¢ of iterations
is less than the maximum value 7', and while the number
t' of times Algorithm 1 has been run in a single iteration
does not exceed a maximum value 7" (line 3-4). The last
condition comes from the fact that, as mentioned in Sec. V
and VI, the convergence of the Survey Propagation method is
not guaranteed. Therefore, we include the variable T” as the
maximum number of times the Survey Propagation method
can be run in a single iteration. Once the surveys n¢—q, .
converge to a steady value (line 5-6), we evaluate if their
value is equal to zero (line 7). If this is the case, we face the
trivial solution and heuristics, such as [18] or [19], are used
to allocate the resources pools to the remaining aggregators
(line 18). If the surveys n¢—y,,, > 0 then the bias of each
variable z ,, towards the possible logical states "0" and "1"
is calculated (line 8). The biases represent, according to the

SIntuitively, the momentum factor is analogous to the learning rate in
machine learning algorithms

Algorithm 1: Surveys update

1 Randomly initialize the surveys n¢—5, ,,, forall ¢ € I' and
Tqm ¢ X*

2 Initialize Tgp, €, p

3 Set convergenceSP = 0 and counter tgp = 1

4 while (tsp < Tsp) and (convergenceSP = 0) do

5 Generate a random permutation for the order in which the
SUrveys 7c¢ g, ,,, Will be updated

6 Update NC—wg,m using the defined order // Eq. (18)-(19)

7 Set convergenceSP = 1

8 for every survey n¢ 5, ,, do

9 if ¢ agm (tSP) = Me—s2q m (tsp — 1)| > € then

10 Set convergenceSP = 0

11 Go to line 14

12 end

13 end

14 Set tgsp =tsp +1

15 end

16 return Ne—ag,m

Algorithm 2: Proposed resource allocation algorithm

1 Build CSP and factor graph from mMTC network  // Sec. IV
2 Initialize parameters 7', T/ and set t = 1, t/ =
3 while X* # X do

4 while (t <T)A (X* £ X)AN({H <T') do

5 Calculate the surveys Nae—zg,m // Alg. 1
6 if the surveys converge to a steady value then

7 if all the surveys have values larger than zero then

8 Set ¢/ = 1 and calculate qu’m, Wiy for

each xq,m // Eg. (25)-(22)
9 Find variable node x7 ,,, with largest bias
difference |W;;_m = Wayml
10 if W;L* o W_. . then
1 ng TG m :qu and
ZTr,m =0, Vr=1,..,Q,r #q

12 else

13 | Setazy, =0

14 end

15 Remove z7 ., and its edges from the factor graph
16 Update X* and sett =t + 1

17 else

18 \ Use a heuristic for the remaining nodes, e.g., [18]
19 end

20 else

21 Sett/ =¢' +1

22 end

23 end
24 end

25 return z Vg € Q, m € M

surveys, how sure is aggregator m about being allocated (or
not) resource pool ¢g. The bias towards the logical state "0"
is denoted as W;q ., and the bias towards "1" is denoted by
W, . Let us introduce 7, and ) = as

=
Tq,m’> " Tq,m

o= [1 .y } P, (20)

T = [1 - P;qym} P;m, Q1

Towm = 1L (1= Moay); (22)
Cer(qun)



where,

ph o= 1T G =msan) (23)
Cel’”r(g;q)m)
Prw= T (=nee,.. (24)
CEF_(CEq,m)
The bias are then calculated as [17]
W= Taq.m (25)
Tg,m _ﬂ;»qym, + ﬂ_;q’m + ﬂ_gq,m 9
+
s
wh = Lo . 26
Tq,m 7.(.;-{177“ _"_ﬂm—qml _"_ﬂ_gq,m ( )

The next step is then to find the variable node z7 ,, with
the largest absolute difference |W;} W m\ between biases
(line 9). If W:% . > Wx_q o resource pool q is allocated to
aggregator m (line 11). If W;Z < W,.  variable z ,, =0
(line 13). After fixing the value of :c;m,qt’flne variable node and
its edges are removed from the factor graph (line 15). Next,
the set X'* is updated (line 16). If all the variables nodes
in the factor graph have been set, then the algorithm returns
this assignment as the resource allocation solution. Otherwise,

another iteration starts.

VI. CONVERGENCE OF SURVEY PROPAGATION

As reported by the proposers of Survey Propagation, there is
no general proof of convergence of the algorithm for arbitrary
CSPs [16]. This is because the survey update in (18) is based
on the cavity method from Statistical Physics. The cavity
method is a state-of-the-art non-rigorous approach to calculate
minimum energy states in spin glasses. Turning the cavity
method into a rigorous theory is an open research question
[17], [24]. As in any message-passing algorithm, the assump-
tion that the messages transmitted among neighboring nodes
in the factor graph representation are statistically independent,
can only be guaranteed when the considered graphs have a tree
structure. This means, the solution of the cavity method, and
in turn, the Survey Propagation approach is exact only for
factor graphs with a tree structure. Nevertheless, numerical
results have shown that the application of Survey Propagation
is not limited to only trees, but is able to find solutions, and
outperform other state-of-the-art techniques, in cases when the
considered graph has a local tree-like structure [16], [17]. The
intuition behind this is that when the considered network has
a tree-like structure, the length of the existing loops in the
graph grows with the number of considered nodes. Thus for
large mMTC networks the correlation between the exchanged
surveys among neighboring nodes is reduced. The use of
momentum improves the convergence of Survey Propagation
because including the estimates of the previous surveys in the
survey update rule can help stabilize it values.

VII. NUMERICAL EVALUATION

In this section, we evaluate the performance of the proposed
Momentum Survey Propagation algorithm via numerical sim-
ulations. For the evaluation, 1000 independent realizations are
considered. Each realization corresponds to the generation of a

random mMTC network. To guarantee the tree-likeness of the
generated networks, we consider an Erdos-Renyi model for
each graph G representing the mMTC network. To ensure that
the CSPs lie in the solvable but difficult interval 6; < 0 < 0,
and based on the results in [31], we assume that the probability
P that two aggregators are neighbors in the Erdos-Renyi model
is P = w/M, where w is the critical threshold introduced in
[31] and M is the number of considered aggregators.

For our simulations, we consider, unless otherwise specified,
a network with M = 103 aggregators and Q = 4 available
resource pools. Furthermore, w = 7.5. For our Momentum
Survey Propagation we consider a momentum factor y = 0.3,
a threshold € = 1073 and a maximum of Tgp = 10 iterations
for the convergence of the surveys. Additionally, the maximum
number T of iterations is set to T" = I() iterations. To evaluate
the performance of our proposed method, we compare it to the
following approaches:

¢ Survey Propagation [16]: This approach corresponds to
the original Survey Propagation algorithm as proposed in
[16] for the solution of CSPs.

o Walksat [18]: Heuristic method to solve binary combina-
torial optimization problems in which the values of the
variables in the CSP are randomly flipped until all con-
straints are satisfied or a maximum number Tj;, = 10°
of flips is reached.

o Belief Propagation [17]: In this case, the resource allo-
cation problem is solved using the Belief Propagation
algorithm described in [17]. Belief Propagation is a
message passing algorithm in which only the probability
of each variable node x; , taking the logical "0" or the
logical "1" value is calculated

Figure 5 shows the number of times a zero interference
allocation is found, in percentage, as a function of the criti-
cal threshold w. Zero interference allocation means that the
available resource pools are allocated without incurring in
any conflict, i.e., the interference is minimized. In the figure
it can be seen that the performance of all the approaches
decreases as w increases. As the probability of two nodes
being neighbors is P = w/M, the larger the w, the larger the
probability that two aggregators are neighbors. For a fixed @,
the larger the probability P means that the allocation problem
becomes harder as more constraints need to be simultaneously
fulfilled in the CSP. At w = 7.5, our proposed approach is able
to find zero interference allocations 98% of the time, which
corresponds to a gain of 6%, 18% and 25% with respect to Sur-
vey Propagation, Walksat and Belief Propagation, respectively.
Note, however, that the gains of our proposed increase with w.
For w = 8, the performance of Momentum Survey Propagation
is at least three times higher than Survey Propagation, which
is the best reference scheme. For w = 8.2, the performance
of Momentum Survey Propagation is approximately six times
higher than that of Survey Propagation. This means, the harder
the allocation problem, the larger the gains obtained by using
our proposed scheme. The good performance of Momentum
Survey Propagation is based on the fact the allocation of
resources is not done by considering only the number of
neighbors each node has, like Walksat does. The exchange
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Fig. 5: Percentage of the number of times a zero interference allocation is
found versus the critical threshold w when Q = 4.

of surveys in the proposed approach allows us to consider the
impact an allocation will have on the satisfiability of the whole
problem, and the use of a momentum factor helps to improve
their convergence compared to Survey Propagation. Although
Belief Propagation is also a message-passing algorithm, it
performance is greatly reduced as it assumes a tree structure
for the network, which is clearly not valid.

We evaluate the impact of the number ) of resource pools
on the performance in Figure 6. For the simulations, we vary
the number of available resource pools from Q =4to Q = 7.
Note that for a fixed P, a larger () results in simpler allocation
problems because there are more resources to distribute.
Therefore, to ensure that the complexity of the allocation
problems lies in the range 6; < 6 < 6., for each considered
() we increase w as shown in Table II. The non-monotonic
behaviour observed in all the considered approaches is due
to the fact that the complexity of the allocation problems
for each w and ) combination is not equal. Nevertheless,
it can be seen that our proposed approach outperforms the
reference schemes across all the range of considered (). For
@ = 5 Momentum Survey Propagation achieves a perfor-
mance two times higher than Belief Propagation and 36%
higher than Survey Propagation. For @) > 4, Walksat is not
able to find zero interference allocation solutions. This means
that message-passing algorithms are more suitable to solve
resource allocation problems when the number @ of resource
pools increases.

In Figure 7, we vary the number M of aggregators in the
network from M = 103 to M = 10%, while keeping the
number of resource pools constant with Q =4 and w = 8. It
can be seen that our proposed Momentum Survey Propagation
outperforms the reference schemes in all the network size
range. Moreover, Walksat and Belief Propagation are not able
to find zero interference allocations for M > 2 x 103 and
M > 3 x 103, respectively. Additionally, as observed in
Figure 5, the gains of our proposed approach, with respect
to the original Survey Propagation strategy, increase when
the allocation problem becomes more difficult, i.e., for larger
M. Considering a larger M makes the resource allocation
problem more difficult because more constraints have to be
simultaneously considered in the CSP as the number of con-
straints depend on the number of aggregators in the network.

Momentum Survey Propagation mssm Walksat
Survey Propagation szszsa  Belief Propagation

100 T T
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80 +
70 -
60 -
50 F
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10 +

Zero interference allocations (%)

Number @) of resource pools

Fig. 6: Percentage of the number of times a zero interference allocation is
found versus the number Q of available resource pools.

Resource Pools  Critical Threshold

Q=14 w="17.>5
Q=5 w=125
Q=6 w=175
Q=" w=225

TABLE II: Critical threshold w according to the number @ of available
resource pools.

Furthermore, note that for our proposed approach, increasing
the network size ten times only causes a decrease of 10% in
the performance.

The performance of our proposed Momentum Survey Prop-
agation as a function of the momentum factor p is shown in
Figure 8. In this case, we consider two values for (), namely,
@ =4 and QQ = 7. It can be seen that both of the considered
values of () exhibit a monotonic behaviour, where © = 0
corresponds to the original Survey Propagation algorithm. The
figure shows that the inclusion of momentum in the update of
the surveys improves the performance as long as p < 0.7. The
maximum performance is achieved for 4 = 0.3. However, this
maximum is only empirically found over the considered range.
The larger p, the larger the impact the value of the survey at
time ¢ — 1 has on the survey update at time ¢. For ¢ > 0.7, the
use of momentum hinders the performance compared to the
original Survey Propagation because more weight is put into
past updates affecting the survey’s convergence.

VIII. CONCLUSIONS

Motivated by the scalability challenges posed by the next
generation of wireless networks, in this paper the resource
allocation problem for large mMTC networks is studied. To
address this problem, we propose a novel approach termed
Momentum Survey Propagation, which is based on statistical
physics. Specifically, we first introduce a model of the wire-
less network inspired by spin glasses, a type of disordered
physical systems. Based on this model, we show how the
resource allocation problem can be written as a constraint
satisfiability problem. This formulation allows us to exploit
the Survey Propagation method from statistical physics to find
resource allocation solutions that minimize the interference.
Our proposed approach extends Survey Propagation and im-
proves its convergence properties by introducing the concept of
momentum. The main advantage of our proposed Momentum
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found versus the momentum factor p for @ =4 and Q = 7.

Survey Propagation is that it can be applied to networks with
a large number of nodes. For a fixed number of resources, it
is able to find zero interference allocation solutions at least
40% of the time and when the reference schemes fail to do so
In our opinion, these results should be the starting point and,
at the same time, motivate a joint effort of both communities.
From this joint work, an improvement of the available methods
from statistical physics can be achieved and a new set of
tools to meet the challenges posed by next generation wireless
communication networks can be developed. Furthermore, our
proposed Momentum Survey Propagation can be used to gen-
erate training data to develop learning approaches considering
large networks. Future work aims at the consideration of joint
resource and power allocation problems a well as dynamic
environments.
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